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Abstract

This paper presents the development of a mesh adaptation
module for a multilevel Cartesian solver. While the module
allows mesh refinement to be driven by a variety of different
refinement parameters, a central feature in its design is the
incorporation of a multilevel error estimator based upon
direct estimates of the local truncation error using _:-extrapo-
lation. This error indicator exploits the fact that in regions of
uniform Cartesian mesh, the spatial operator is exactly the
same on the fine and coarse grids, and local truncation error
estimates can be constructed by evaluating the residual on
the coarse grid of the restricted solution from the fine grid. A
new strategy for adaptive h-refinement is also developed to
prevent errors in smooth regions of the flow from being
masked by shocks and other discontinuous features. For cer-
tain classes of error histograms, this strategy is optimal for
achieving equidistribution of the refinement parameters on
hierarchical meshes, and therefore ensures grid converged
solutions will be achieved for appropriately chosen refine-
ment parameters. The robustness and accuracy of the adapta-
tion module is demonstrated using both simple model
problems and complex three dimensional examples using
meshes with from 10°to 10 7 cells.

1 Introduction

While error estimation using local gradient recovery tech-
niques have long been popular in structural mechanics and
other disciplines governed by elliptic systems, [1] such rigor-

ous error estimates are generally not available in fluid
mechanics where the governing equations contain non-self-
adjoint operators. As a consequence, error estimation and
adaptation for fluid mechanics has evolved over a different
path. The simplest methods in the literature are gradient, and

f r c -[2114] Whilundivided difference based eatu e dete tors. ' e

these methods have been extremely successful for various
classes of problems [2]-[7] their lack of formalism makes them

difficult to blindly apply to problems far from established
experience. Indicators based upon estimates of interpolation
error, [7][8][9] lend some of the missing formalism. However,

since these essentially compute the local curvature of a repre-
sentative variable or combination of variables, they are not
clearly superior (or different from) straight feature detec-
tion. [5] The multilevel error estimators from the literature on

Adaptive Mesh Refinement (AMR) were among the first
Richardson extrapolation-like error estimators [l°][q 1][121 but
have been only narrowly used outside the AMR community.
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More recently, there has been interest in multilevel error indi-
cators which use the residual of a higher order interpolation
of the existing solution to estimate the local error. [131114][15]

This approach is attractive since it can be combined with
solution of an adjoint problem to produce a mesh adaptation
strategy that seeks to minimize error in a specific integral
quantity of engineering interest. [13]'[16] The hope of these

techniques is that, for the cost of the adjoint solution and
Jacobian storage, one can produce a mesh that focuses on
reducing only those errors which are important to the prob-
lem at hand, rather than simply equidistributing the error.

While the research on adjoint-based mesh optimization is
very exciting, two drawbacks make it currently unattractive
of a general purpose analysis code. First, if the Jacobians are
not already present in the solver, it is an expensive proposi-
tion to form them solely to drive the adaptation. Secondly
and more fundamentally, many problems of interest have
competing requirements that cannot always be encapsulated
into a single output functional. For example, a user may wish
to optimize a single simulation for lift, drag and pitching
moment. While this is currently an area of research interest,
results are not currently in-hand.

In this paper, we develop a new multilevel adaptation module
for use on adapted Cartesian meshes with embedded bound-
aries. Figure 1 shows a sample hierarchy of such meshes used
by a new, parallel multigrid solver. [17] the fact that these

coarse meshes can be automatically generated makes multi-
level error estimation a viable alternative, even for grids
around very complex geometries. Seeking to take advantage
of this fact, we explore Richardson extrapolation-like error
estimators which are modified to exploit the hierarchical
nature of adapted Cartesian grids. Even without the sensitiv-
ity information provided by adjoint-based approaches, the
module will still offer huge savings over a priori mesh
enrichment, and taking advantage of this is an important step.
The estimators we present are light-weight, and both fast to
implement and execute and leverage much of the machinery
already built into multigrid solvers.

Since Cartesian grid refinement is restricted to cell subdivi-
sion (h-refinement), the approach is intrinsically discrete.
There exists a necessary reliance upon a refinement threshold
which selects cells destined for subdivision. This work exam-

ines the topic of threshold selection in detail. We develop a
methodology for robustly setting this threshold which also
ensures consistency. The approach both controls the level of
error in the domain and equidistributes the remainin error as
fast as possible within the restrictions of hierarchical (nested)
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Figure 1."Hierarchical sequence of partitioned meshes around tiffing body configuration used by parallel
flow solver of ref. [ 17].

refinement. Given a robust strategy for setting the adaptation
threshold, adaptive cases may be run fully automated. This
reduces the sensitivity of the results to user experience/inter-
vention which has long been a drawback of adaptive meth-
ods.

2 Multilevel Error Estimation

Multilevel Richardson-type error estimators like those in [12]
are attractive because of their low cost and firm theoretical

underpinnings in smooth solutions. After developing these
for perfectly nesting Cartesian mesh hierarchies, this section
goes on to examine their application at adaptation boundaries
and cells cut by geometry. It goes on to present shock and
vortex-core detection strategies also planned as options to
directly adapt to under-resolved features.

2.1 Local Truncation Error Measurement

Consider the 1-D wave equation u t + A ux = 0 discretized
with forward Euler in time and arbitrary spatial differencing
using a timestep k, and a cell dimension h.

k!(U_+ 1J U_J)+ I- _(FR, j-FL,j) = 0 (1)

is the discrete approximation to the continuous solution,
u(x, t), in cell j at time n, while F L j and F R j are the numeri-
cal fluxes through the left and rig}_t bounda fie.' ofj and con-

tain the details of the spatial operator. The difference of the
numerical fluxes is the residual and the discrete equation can
be written more compactly as

(_ +1_ j)+ - 0, (2)

where the discrete residual operator R(o) now contains all
details of the numerical flux balance for cell j.

The local truncation error, LTE, measures how well the dis-

crete equation models the actual PDE throughout the domain.
It is defined by replacing the approximate solution _ with
the exact solution u(x, t) in equation (2). Since U7 exactly

satisfied the difference equation, the exact solution will not,
and the difference will be the local truncation error,

LTEhA(X,t).

1 R(u(x, t))
LTEh, k(x, t) = _c[u(x, t + k) - u(x, t)] + h (3)

If the problem reaches a steady state, then
u(x, t+ k) = u(x, t) and we can drop the dependence on
time.

LrEh(X ) = R(u(x)) (4)
h

Equation 4 is instructive since it relates the local truncation
error to the discrete residual operator R(°) and the cell dimen-
sion h. Furthermore is clear from the derivation that in multi-

ple dimensions LTE(_c) - Residual/hal where d is the number

of spatial dimensions of the domain.

2.2 Local Truncation Error on Uniform Cartesian

Meshes

Equation 4 is useful since it permits direct measurement of
the local truncation error of a particular numerical method on
an actual computational grid for any problem that has an
exact solution. One such example is the supersonic vortex
model problem used in reference 18. Figure 2 outlines the
problem and shows 4 sample telescoping meshes. The actual
meshes used had from 130 to 7800 control volumes. After
initialization with the exact solution, the local truncation

error was computed within each cell by dividing the residual
by the cell volume (following §2.1 and eq. (4)) using the
Euler solver in reference 17 without limiters.

The L 1 norm of the LTE in density was computed for each
mesh and is displayed in figure 3 as a function of the number
of cells in each mesh. Performing a regression analysis on the

Cartesian mesh data reveals an asymptotic slope of 2.11. For
smooth solutions, one can show that the global error is of the
same order 19.

-2-
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Figure 2: Overview of supersonic vor-
tex model problem from ref. 18
used to investigate local truncation
error., at conditions: Min=3.0,
pin= 1/y, pin= 1,ri= 1,ro= 1.9.

For comparison, figure 3 also contains the results of the same
experiment performed with three types of body-fitted grids:
(1) regular, nearly unit aspect ratio quads, (2) right triangles
made by subdividing the quads, and (3) a "quality" triangula-
tion [2°] in which no angle was less than 29 °. All methods
used the same numerical scheme. While the details of this

experiment are contained in the Appendix, figure 3 displays
the results. The asymptotic slopes of all four mesh types are
shown in the figure. We note that the slopes of all but the
"quality" mesh are similar but that the level of error on the

Cartesian grids is consistently 6 to 10 times lower than the
other grids over the full range of problem sizes.

i0°_ ........ I- ' '

lO'l'
E \"_ 1.02["-'--.__

1 ">,

•_ 10_

m-3 _ C_e_ia_M._._
_ "Quality" Triangulation _
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• -----oRegular Right Triangles
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Figure 3: L 1 norm of LTE in density for supersonic vortex

model problem on sequence of meshes for 4 mesh. The

asymptotic slope of each curve is labeled. Further

details of this experiment are presented in Appendix A.

2.3 Estimation of LTE on Nested Multilevel Meshes

Since the LTE can be computed for each cell in the domain, it

provides an excellent basis for constructing an refinement
parameter within each cell. Unfortunately, since few prob-

lems of practical interest have an exact solution, we must
develop a method of estimating the LTE within each cell.

In §2.2, the fact that we could reasonably draw straight lines
through the data in figure 3 established the local and global
order of the method. We can express this more formally by
recalling that for a discrete method with local order p, there

exists a constant Clte such that

II '1LTEh(x ) ._ Ct_e_ . (5)

Section 2.2 also established that for the solver in reference

17,p was around 2.11 when I[_1 is the 1-norm. Furthermore,
since the RHS of equation 5 vanishes for small h, the method
is obviously also consistent. Consistency implies that when h

is small, the discrete solution Uj,h in cellj of a mesh will be a
good approximation to the exact solution u(}), and this
statement is the basis of our multilevel error estimation pro-
cedure.

Assume that the numerical method has converged on a fine
grid with mesh spacing h so that the residual of the discrete
solution will be zero for every cell j in the domain.

Rh(Uj) = 0 (6)

Since the method is consistent, the current discrete solution is
assumed to be close to the exact solution, U *, u(:_). Anj,h-
estimate of the local truncation error on a coarse grid with
mesh spacing H can then be written by substituting the dis-

crete solution on the fine grid for the exact solution in equa-
tion 4.

" RH(4Uj'h) (7)
LTEH(X) - H

Following equation 7 we obtain an estimate of the LTE on the
coarse grid by first restricting the discrete solution on the fine

grid Uj h to a coarser grid using the interpolation operator
/_, and' then evaluating the discrete residual of the restricted

solution on the coarse grid. Since Uj h satisfied the numerical
scheme on the fine grid, the restricted solution I_U.- will

. n J, n

not, in general, produce exactly zero residual on the coarse
grid. Thus, in the same way as the exact solution provided a
means of measuring LTE h in §2.1, the discrete solution on the
fine grid provides a method of estimating the error on the
coarse grid. Since adaptively refined Cartesian meshes nest
exactly, the residual operator R is exactly the same on coarse
and fine meshes 1. This permits us to apply equation 5 on a

cell-by-cell basis. The coarse grid estimates are then used to
trigger cell refinement on fine grid. This method of error esti-

mation is known as T-extrapolation within the multigrid corn-

1. In ref. 12 an estimate similar to eq.7 was used on curvilin-
ear meshes. However, on curvilinear meshes, Rh _ Rt-1
since the coarse grid control volumes are not the exact
union of the fine grid control volumes.

-3-
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munity, [2U and the perfectly nested residual operators that

occur on Cartesian grids makes its use extremely attractive
here.

In the present work, the restriction operator I H is a volume

weighted average, which is the same as that used by the mul-
tigrid smoother used for convergence acceleration. By using
the prolongation operator from the multigrid scheme as well,
we are able to construct refinement parameters on the fine
mesh for the cost of one restriction, one coarse mesh residual
evaluation and one prolongation. Since these operations use
machinery which already exists in the multigrid solver, they
may be implemented with little effort.

2A Mesh Irregularities

The preceding section examined error estimation on hierar-
chies of uniform Cartesian meshes. Adaptively refined Carte-
sian meshes, however, introduce some real-world
complications which need discussion. As mentioned in the
final paragraphs of §2.3, the multilevel error estimation pro-
cedure relies upon use of the same spatial operator R on both
the fine and coarse meshes. We denote the spatial operator on
the pure Cartesian regions of the mesh as R z. While R L is
clearly in use in uniform regions of the grid, nearer to adapta-
tion boundaries and cut-cells the situation merits closer
examination.

Figure 4 depicts a sample fine grid (a) and the corresponding
coarse ceils (b) near a simple refinement boundary. The adap-
tation boundary introduces irregularities into the connectivity
graph which locally changes the residual operator. Thus, on
the fine mesh, (Fig. 4a) all the cells which are immediately

adjacent to the adaptation boundary have R _ R±. The situa-
tion is the same on the coarse mesh (Fig. 4b) and since the

form of R h and that of R H must be identical for equation (5)
to hold, the multilevel error estimator from §2.3 can't be

accurately constructed for the fine ceils shown shaded in fig-
ure 4a. Since this difficulty is associated with mesh irregular-
ity, it appears in the residual operator of cut-cells as well.

While the formal basis for local truncation error estimation

makes it preferable to straight feature detection, there are
several drawbacks that make them difficult to use - even for

Cartesian multilevel meshes. First, for a reliable error esti-

mate, the same stencil needs to be applied to both the coarse
and fine grids. Thus, at mesh irregularities such as grid inter-
faces and cutcells, the procedure described above does not
produce a reliable estimate. Colella et. a/[22] present a nice

treatment of this problem in which the estimate is multiplied
by the number of cells of that type. In essence, this scales a
cell's contribution to the error by the number affected cells.
While the local truncation error at an interface is larger than
at a uniform cell of the finer or even the coarser level, related

work on convergence theory for non-uniform grids suggests
that the estimate is still overly pessimistic. [23][241 (These
results point out that its possible for O(h) LTE to still pre-
serve O(h) global accuracy.) At present, we simply ignore
error estimates at interfaces and cut ceils, and rely on a buff-
ering procedure to supply error values using piecewise con-

(a) Fine Mesh
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Figure 4: Illustration of difference stencils against adapta-
tion boundary between cells of different levels. Cells in
the shaded region of the fine mesh restrict their solution
into the corresponding coarse mesh shown. Since the
residual operator on this coarse mesh is different from
that in the corresponding cells on the fine mesh, a cell-
by-cell interpretation of eq.5 is not valid and accurate

stant extrapolation of the error estimates from neighboring
cells.

Inspection of figure 4 demonstrates that this irregularity
affects a larger portion of the mesh than one may initially
suspect since the cell next to an interface has its gradient cal-
culation affected. This cell in turn contaminates the stencil of

a cell two away from the interface. Even a minor change like
this can be important if it occurs in a region of near zero mea-
sured LTE. Additionally, since it is the coarse grid which pro-
vides the estimates, the pollution can extend as far as 4 cells
from the interface on the fine grid, so that the fine grid cells
have no reliable estimate of their own (cf. fig. 4). To produce
grids with a stencil of 5 regular cells in each direction, large
regions of uniformly refined cells need to be generated in the
mesh. Although x-estimates have been used with great suc-
cess in block structured AMR methods, they are somewhat
more difficult to implement on unstructured multilevel Carte-
sian. Asymptotic arguments contend that irregular cells are

2
confined to only O(N ) cells in a 3-D mesh with O(N 3) cells.
In practice however, the difference between O(N 2) and O(N 3)
is not as great on the coarse mesh as it is for the fine mesh,
and even reasonably refined meshes can have as much as

30% of the cells contaminated by irregularity. When the
neighbors of cells directly affected are also counted, esti-
mates on over half the mesh may have some contamination.

-4-
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A second problem with LTE estimates is the need for a some-
what reliable solution to have already been computed. The

approximate solution should be in the asymptotic region for a
valid error estimate. This observation leads to a somewhat

different strategy than that followed by feature detection
strategy. Feature detectors generally perform well even when
starting from a very coarse grid, making possible many
cycles of adaptive refinement. For the LTE based refinement,
our strategy is to start with a fairly refined initial grid, and
on/y use two or three additional cycles of LTE driven adap-

tive refinement. In the examples here the initial grid uses
geometry based refinement only, but initial grids generated
from feature-detection based refinement could also be used.

2.5 Prespeeified Adaptation Regions

Both LTE estimates and feature detection approaches suffer
from a difficulty in localizing them to regions of interest. For
example, errors in the wake behind a wing persist for quite a
distance downstream. However, if a user is interested in the
pressure distribution on the wing, research suggests that there
is no need to refine the wake region very much. _ In the

present work we simply allow the user to define a prespeci-
fled (Cartesian) region in which adaptation is permitted.
While not particularly elegant, this approach is adequate in
practice.

2.6 Feature Detection

Feature detection attempts to use the current discrete solution
to determine where mesh needs enhancement. Common
schemes use first or second-order undivided differences and

gradient information of various flow quantities. They attempt
to "smooth out" computational space in hopes of producing a
uniform error distribution.

Since the link between flow features and truncation-error is
not as formal as the Richardson-like LTE estimates discussed

earlier, approaches in the literature vary significantly and
everything from gradients and second derivatives to unscaled
and scaled differences have been used. [2][3][4][51126]

In 1991 Warren et al. showed that since gradients and second
derivatives stay approximately constant with mesh refine-
ment, they make poor refinement parameters. A cell with a
high gradient will continue to have a high gradient even after
subdivision. From the standpoint of grid convergence, we
note that if the refinement parameter is to act as a substitute
for the real LTE it should have the same asymptotic behavior
as the LTE in smooth regions of the flow. For a pth order

scheme, this means that halving the mesh should reduce the
error by 2p.

For a first difference based quantity to mimic the LTE behav-

ior of a second-order scheme, it must be scaled by the local
mesh size, h. In one dimension, this leads to a first difference

based refinement parameter of the form:

rj-- j,j T
which is a normalized version of the first difference parame-
ter advocated by Warren et al. [26]

Similarly, a second difference based parameter should remain
un-divided to give the same behavior. 2

62OJ- *J+'J:-2*J +*J-tJ2 = h} vzoj
rj- ddj ddj _j (9)

The 1-D refinement parameters in eqs.(8) and (9) can be
extended using a finite volume approach. This produces a
vector refinement parameter, with components for each of the
cell's dimensions. The first difference based refinement
parameter in the k th direction of cellj is:

rj, k h 2 (Vq_j " k')
= j,k ¢j (it)

where I¢ is the unit vector in the k th direction.

These vector refinement parameters can be used to drive both

isotropic and anisotropic cell subdivision as discussed in
ref.[4], and a similar approach may be used for the second
difference based parameters.

Popular choices of ¢ are the density, velocity magnitude or
sometimes the local static pressure. In addition, combinations

of these scalars are also possible. The investigations in sec-
tion 4 use either density or velocity magnitude for detection.

3 An Optimal Strategy for h-Refinement

The adaptation strategy seeks to refine the mesh using the
LTE estimates or other refinement parameters from §2 to
improve the solution. Unlike unstructured or structured body-
fitted approaches, r-refinement (redistribution) is not an
option with Cartesian grids, and cell sub-division (h-refine-
ment) is the only alternative. The adaptation strategy takes
the refinement parameters from section 2 as input and returns
a boolean tag for each cell in the fine mesh. Subdividing each
tagged cell will improve the accuracy of the discrete solution
by reducing the local errors.

Algorithm A outlines the adaptation procedure.

Algorithm A: Adaptation Strategy

Input: Vector of refinement parameters for each
cell on fine mesh, r"

Output: Vector of cells tagged for h-refinement "_.

A.1 Normalize: Normalize the refinement parameter vec-
tor. 39 = Irjl/llrll=

Mesh optimization methods like those in references [ 15]
and [16] localize the adaptation automatically when the
user constructs a functional that defines the single output of
interest.

2. Eq. (9) differs from that presented in ref.[26] (eq.15) since
theft parameter is re-scaled by the local mesh dimension
and will therefore vanish faster than the LTE as the mesh
size is decreased.

-5-
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A.2 Tag: Apply the adaptation criteria a(.) to the normal-
ized refinement parameter to produce a vector of
tagged cells. "_ = a(_')

A.3 Rules: Modify the set of tagged cells to ensure the
validity and smoothness of the output mesh.

A.3.1 Buffer: Add buffer layers of tagged cells.
-__ rb(_ )

A.3.2 Smoothness: Filter for island/void suppression.

A.3.3 Validity: Ensure adaptation boundaries do not
exceed 2:1. _ ,--- rl(-_ )

A.4 Output final vector of tagged cells "_ for subdivision.

The final set of tagged cells output in A.4 is then h-refined
and the solution vector is initialized on the new fine mesh

with the prolongation operator from the multigrid scheme.

In the following sub-sections we present a new strategy for
reducing the refinement parameters to some predetermined
level. The method is optimal in that it accomplishes this task
as fast as possible. In addition the method ensures that the
permissible level of the refinement parameter chosen at the
outset will not vary as the mesh and solution evolve.

3.1 Equiflistribution of Refinement Parameters

Equidistribution aims at producing a mesh which contains

the same level of refinement parameter in each cell. Since the
refinement parameters are stand-ins for the local truncation
error, this goal spreads the remaining discretization error out
evenly over the domain. As this level is reduced, the method
is guaranteed to converge to the correct solution. This princi-
ple guards against over-resolving some features of the flow
while overlooking others.

In practice, equidistribution is somewhat over conservative
most of the time. It assumes that all errors are equally impor-
tant to the simulation, and this is certainly not the case most
of the time. However, without additional guidance about
what is important for a particular simulation, equidistribution
simply ensures that everything in the simulation is equally
correct. In addition, if a method can control the LTE distribu-

tion to achieve equidistribution, then it can control the error

to achieve a different goal. Its easy to conceive of inverse-dis-
tance weightings or error weightings that take the local char-
acteristics into account in order to identify those errors that
have the strongest impact the output functionals of interest.

Figure 5 shows the histogram of refinement parameters in a
mesh which has achieved equidistribution, since all cells in
the domain have the same error, they fall in the same bin, and
the histogram looks like a delta function whose height is
Ncells.

Like most strategies for adaptation, the paradigm ofAlg. A is
to start with some initial distribution of refinement parame-
ters, and drive this distribution toward the idealized distribu-
tion shown in fig. 5.

Figure 6 shows the Gaussian-like distribution of refinement

parameters which serves as a model for the histogram prior to
h-refinement. A common approach found in the literature is
to set the refinement threshold to some fraction of a standard
deviation above the mean of the distribution .[3][4][26]

3.2 A Fresh Look at Refinement Histograms

Figure 7 shows an actual refinement histogram resulting from
a coarse grid simulation (3775 cells) of flow over an ONERA
M6 wing at transonic conditions [25]. This plot bears little
resemblance to the idealized Gaussian-like model shown in

figure 6. The refinement parameters lie between 0 and 1. The
mean value is 0.011 but the standard deviation 0.04. More-

over, fully 8.2% of the cells lie below the mean, and almost
50% have 1_ < 0.001. As a consequence of this extreme dis-

parity in scales, setting the threshold, t, anyplace above the
mean only addresses the error in a handful of the most severe
cells. Only after the very worst errors are reduced by many
cell refinements will error in the bulk of the domain be

addressed. In shocked flows, the refinement parameter will be
highest in cells with shocks or other strong non-linear fea-
tures. As a consequence, this approach will inadvertently
result in a refinement process which over-resolves shocks and
other severe features without ever addressing smooth regions
of the flow. Oversights such as these have been shown to pro-
duce an adaptive procedure which can actually converge to

- :[26]
the wrong solution .

Ncells--

Refinement Parameter

Figure 5: Idealized histogram of refinement parameters
in a mesh which as achieved equidistribution.

Mean/Median t E

_ Refinement

Refinement Parhmeter
Figure 6: Idealized distribution of refinement parameters

prior to h-refinement. Region a contains N a cells.
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Figure 7" Histogram of adaptation parameter for a
coarse mesh simulation of flow around an ONERA
M6 wing at transonic conditions [251.

In earlier work [4] we advocated a filtering approach which
removed cells containing shocks or other strong features in
an attempt to clean up the histogram prior to computing the

mean and standard deviation. Even this approach, however is
dubious given the huge disparity in scales.

A less ad-hoc approach toward compressing the scales in the
histogram is to simply take the log of the refinement parame-
ter prior to binning up the histogram. Figure 8 shows the his-
togram, of the same data as in figure 7 but computed using
log2(l_'l) rather than simply I_'t. The mean value of this new
distribution is -6.4 and the standard deviation is 4.3. The

rescaled data much more closely resembles the idealized dis-
tribution in figure 5.

[40

12(I -.'

.._ 100

4O

211 - 15 - 10 -5 0

log_2fRcfit_ment P ,-u-z,tm)

Figure 8: Histogram of data from fig .7 computed using
log2(Irt) rather than the raw refinement parameter.

3.3 Optimal Threshold Selection

The motivation for choosing base 2 for the logarithms used to
rescale the refinement parameters in the proceeding section
becomes clear when selecting an appropriate threshold. Near
grid convergence, each 2:1 cell refinement using a pth-order

scheme will reduce the LTE by a factor of 2p. With 2:1 cell
refinement, and the present second-order scheme, the chil-
dren of a h-refined cell will therefore get translated an abso-
lute distance of 2 units to the left on these base-2 histograms.
Figure 9 illustrates this process. If there are N a cells in region

e_

I ,

Refinement Parameter
Figure 9: h-refinement moves the cells in region a to the left

according to the order of accuracy of the scheme. If a
contains N a cells, then a* contains m N a cells, where m
is the number of children produced by refining a cell.

a of figure 9, and each cell is subdivided into m children, then
a* wiU contain m Na new cells.

If our goal is equidistribution, then we desire to build the
delta function of figure 5. An optimal method construct these
as rapidly as possible. Assuming that the histogram is mono-
tonically decreasing to the right of the median, the new histo-
gram grows most rapidly if the highest point of a* is placed
on top of the median of the existing distribution. Since the
cells in a move 2 units to the left, the threshold which builds

the highest peak is identically 2.

Subsequent refinements will add to this same peak, and the
target level of error will remain constant as the mesh evolves.
It is interesting to note that if the threshold is chosen above or
below than this value the target error level will continue
migrate higher or lower (respectively) with subsequent cell
refinements.

Just as refinement moves cells to the left on the histogram,
coarsening transfers ceils to the right. In the absence of
coarsening, these low-error cells will remain in the histogram
and appear as a "tall" to the left of the peak value. Figure 10
illustrates the evolving histogram. With the threshold chosen
as described above, newly refined ceils will not alter the his-

__3_em_ / \ _,r/entPara_ !

Figure 10: Evolution of a histogram for a mesh without
coarsening. Growth in the number of ceils before the
peak will be approximately geometric.
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togram to the left of the peak value, and therefore no newly
refined cells can ever end up in this tail. Since they were cells
in the original unadapted mesh, this tail contains only coarse
cells, and since coarse cells fill space very quickly, there can-
not be very many of them in the domain as compared to the
number of highly refined cells in the peak. In addition, since
the peak was built via cell subdivision, and the number of
children produced per cell is generally constant, the growth
approaching the peak from the left must be approximately

geometric.

3.4 Specifying an Error Level

Skeptics may point out that setting the adaptation threshold
to its optimal value removes the user's "control" of the adap-
tive process. While this is precisely the goal of automation,
there is a clear need for a user to be able to have some control
over the level of error in the final solution.

In three dimensions, isotropic h-refinement of almost any
polyhedron produces cells very quickly. Hexahedra are
refined 8:1, and depending on the method of subdivision, tet-
rahedra multiply at about the same rate. Even allowing for
anisotropic subdivision of some cells, the 3-D growth rate is
such that adaptively refined cells virtually always account for
the median value in the histogram.

Since the location of the peak can be controlled by adjusting
t, the most efficient strategy is to set the desired peak location
on as coarse a mesh as possible (i.e. the first adaptation
cycle). Subsequent adaptations will then continue to build on
this peak using the optimal threshold. This allows the user to
set a desirable error level based upon the histogram of the
unadapted coarse mesh, and then drive the refinement hands-
free.

3.5 An Illustrative Example

Using the coarse mesh simulation from the base-2 histogram
in figure 8, figure 11 shows the evolution of the histogram in
this simulation over the next 5 adaptation cycles. This exam-
ple clearly shows the rapid growth of the peak in the histo-
gram confirming its approach toward equidistribution of the
refinement parameter.

Since this is a real 3-D transonic flow, several issues merit

discussion. Adaptation was driven by the undivided first dif-
ference of velocity magnitude scaled by the local mesh
dimension as presented in §2.6. The adaptive procedure in
Alg. A tagged ceils according to adaptation criteria, and these

tags were then modified to satisfy the smoothness and mesh
validity rules detailed in A.3. In addition, the adaptation crite-
ria used in this example was:

^

a(rj) = 1 Irj]>I;I+2
0 otherwise

(11)

,'2q

Where ]rl is the mean value of the magnitude of the refine-
ment parameter, rather than the precise median as called for
by the theoretical development earlier in this section. Of
course for the narrow peaked histograms shown in the figure,

4000

0

-t5 -10 -5 0

-15 -10 -5 0

h)l_ 2( lc lllll21ill;,lll I_l/anij

Figure 11." Evolution of histogram through 5 adaptation
cycles for transonic ONERA M6 wing case using the
optimal threshold.
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the mean is close to the median - it is within one unit of the

median at every cycle after the first. Nevertheless one would
expect somewhat better performance if the true median was
used.

4 Numerical Examples and Discussion

The LTE estimates and feature detection approaches in §2
have been applied to both simple and complex configurations
in three dimensions. This section begins by presenting results
showing that, when combined with the h-refinement strategy
of §3, both can provide valid approaches to achieve grid-con-
verged solutions. We then present adapted solutions on two
complex configurations to demonstrate the robustness of the
procedure when run "hands-off' on real-world complex con-
figurations.

4.10NERA M6 Wing

In ref.[17] the baseline Euler solver was validated using the
well-known ONERA M6 wing example. [25] This case con-

siders the transonic flow over this wing at M_ =0.84 and
a = 3.06 °. Although viscosity was obviously present in the
experiment, the case has been widely studied using inviscid
solvers, and a multitude of Euler solutions are available in the

literature for comparison.

This flow was computed using both the multilevel x-extrapo-
lation LTE estimates and scaled first-difference (eq.10) based
feature detection using _ = In as a refinement parameter.

Figure 12a displays both the mesh and solution resulting
from the LTE based adaptation, while 12b contains these
same plots using feature detection. In figure 12, the x-extrap-
olation analysis used an initial mesh with 8 levels of geome-
try based refinement and then an additional three cycles of
solution-based refinement following the philosophy of §2.4.
The final mesh shown contains 1.8M cells. The feature detec-

tion based results in figure 12b began on a mesh created with
5 levels of geometry-based adaptation and about 30k cells
followed by 6 cycles of adaptation. The final mesh contained
1.9M cells. After 5 levels of adaptive refinement, the mesh
contained about 1.2M cells and integrated quantities (normal,
axial and side force) were virtually the same as those
obtained on the final (1.9M cell) mesh. The integrated quanti-
fies for both examples changed by less than 0.1% in the last
adaptation cycle suggesting that the results are grid con-
verged.

Lift and drag coefficients for z-extrapolation were: 0.3041
and 0.0117 while those the feature-detection were 0.3042 and

0.0116. Comparison between the two simulations reveals a
difference of less than 0.04% in the magnitude of the total
force on the wing, and the final meshes have cell counts
within 6% of each other.

; C0n[6Urs

Figure 12a: Flow over an ONERA M6 wing at Moo ---0.84
and cc = 3.06 °, adaptation driven by x-estimates of
LYE in density. The final mesh contains 1.8M cells

\ / density contours/

Figure 12b: Flow over an ONERA M6 wing at Moo =0.84
and a = 3.06 °, adaptation driven using scaled first
differences of velocity magnitude. The final mesh
contains 1.9M cells
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Figure 13: Pressure profiles from transonic ONERA M6

wing case at 44% span showing evolution of the Cp
history over the last 3 adaptation cycles.

Figure 13 shows convergence of the Cp profile at the 44%
span station and includes an overplot of the experimental data

• • - [751 • •for the slmulatxon m figure 12b . Behavior at this span sta-
tion is typical and shows convergence of the adaptive process
over the last 4 adaptation cycles. In the figure, the profiles of
the solution after 5 and 6 adaptation cycles are essentially
indistinguishable. Comparison with the experimental data is
generally good and shows the same kinds of differences
reported by other inviscid simulations of this viscous flow• In
particular, the separation bubble following the rear shock is
not modeled, and this shock is positioned slightly behind that
in the experiment.

4.2 Complex Configurations

Figures 14 and 15 display the first of two examples showing
real-world applications of the adaptation module on complex
geometry. The supersonic canard-controlled missile geome-

a) top view of geometry

.......................................... r 111 ITII lllli/ .................. _"

Figure 14: Geometry and adapted mesh for canard-con-
trolled missile example. The final mesh has 4.5M cells
and used 6 cycles of adaptive refinement, the last 3 of
which were confined to the pre-specified adaptation
box illustrated.

try in figure 14a contains several features which make it chal-
lenging to simulate• At angle-of-attack, or anytime the

canards are deflected, they will create vortices which may
interact with the tail fins of the missile. Due to the high fine-
ness ratio of the missile, these vortices must convect over 30

canard chord lengths before reaching the tail. Clearly excess
numerical dissipation can easily destroy this important inter-
action. In addition, the disparity in length scales on the geom-
etry makes this simulation challenging. The canard chord is
only ~1/4o th of the body length. The simulation must resolve
not only fine geometric scales like the leading and trailing
edges of the canards, but also the bow shock on the missile,
and the shock system generated by the canards themselves.
Inviscid overset (structured) grid simulations with the Army's

OVERFLOW-D solver used over 30M points to resolve the
features of this flow field•

Supersonic flow over this missile was computed at zero
degrees roll, and M_= 1.6 at a = 3°. The canards are
deflected 15" (nose up). These conditions are give a reason-
ably strong interaction between the canard tip vortices and
the leeward pair of the interdigitated tail fins.

Figure 16 shows contours of velocity magnitude in the dis-
crete solution of this flow on the adapted mesh shown in fig-
ure 14. The refinement parameter in equation (10) based on
density was used to drive the adaptive process. Both figures

clearly display the trajectory of the canard vortex system as
they convect down the body. The final mesh has 4,5M cells
and used 6 cycles of adaptive refinement, the last 3 of which
were confined to the pre-specified adaptation box illustrated.
Several axial cutting planes in figure 15 display the evolution
of the canard vortex as it travels down the missile body. The
computed normal force coefficient on the final mesh matches
the inviscid results in ref [27] to within 3%.

One interesting aspect of the missile simulation is that with
the adaptive strategy outlined in §3 and the refinement

Figure 15: Velocity magnitude contours for flow over a
canard-controlled missile of in fig. 14 at M= = 1.6 at
a = 3 ° with the canards deflected 15 ° (nose up.
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parameter from equation (10), the canard vortex and other
important, but smooth regions of the flow are refined to the
same level as the shocks. Thus the case can be made that the

shocks are not receiving undue attention from the refinement
scheme.

This observation is further supported by the space-shuttle
configuration displayed in figures I6-18. In this case the

model was composed of 22 separate components, and
included spoilers, flaps, rudders, engine bells, and other geo-
metric detail.While the elevons and spoilers are nominally
undefeated, some gaps exist, and there is flow leakage near
these control surfaces.

The half-body, power-off configuration was simulated at
M_ = 1.5 and ct = 8°, and refinement was focused in a box
extending 3 body lengths in the crossfoot directions truncated

just downstream of the orbiter. Figures 16-18 all display the
solution using contours of velocity magnitude, and the
scaled, undivided first difference of density was used as the
adaptation parameter. Five cycles adaptation were carried out
(hands-off) from an initially geometry refined mesh, produc-
ing a final mesh with 8.5M cells. Figure 16 shows a nose-on
view of the grid mirrored to the starboard side, with contours
of the solution on the port side. While the bow and wing

shocks are reasonably wee resolved, nearly equal mesh spac-
ing is used in much of the near-body lee-side flow. The flow

structure is reasonably complex, with the body, wing, OMS
pods, etc. all producing massive curved shocks that are cap-
tured by the refinement. The curvature of these shocks results
in strongly non-linear flow downstream and the refinement
extends into these regions. In addition, both the wing tip vor-
tex, and a vortex emanating from the gap between control
surfaces are evident in this figure.

Figure 16: Computational mesh and velocity contours of
solution for orbiter simulation at M_ = 1.5 and ct = 8 °.
The final mesh contains 8.5M cells.

Figure 17 provides additional insight, displaying both the
mesh and solution from a vantage point behind and above the
port wing. The cutting plane in this view is located mid-way
over the starboard wing, and some gaps between the control
surfaces are visible. The bow, canopy, wing and trailing edge

shocks are all clearly visible in this view. Figure 18 is a pro-
file shot which contains a cutting plane through the symmetry
plane to provides a better view of the canopy and bow
shocks.

Figure 17: Rear three-quarter view of orbiter geometry and
mesh showing gaps between control surfaces and cut-
ting plane through solution at a mid-span location.
M_ = 1.5, ct = 8°, velocity contours
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Figure 18: Side view of orbiter simulation and symmetry
plane solution. M_ = 1.5, et = 8°, velocity contours.

5 Conclusions and Future Work

We have presented Cartesian mesh adaptation strategies
driven by either local truncation error estimates or feature
detection. The adaptation module adds a solution-based mesh
refinement capability to the geometry based refinement of the
Cartesian mesh generator. Timings have shown the new algo-
rithm to be a bit faster than the original mesh generator, due
to a few improvements in the algorithms and implementation.
Both simple studies and highly complex 3D examples were
presented with very high resolution, demonstrating the
robustness and utility of the adaptation. The module produces
several million Cartesian cells-per-minute on desktop com-
puters and was demonstrated on complex example geome-
tries with -107 cells.

An interesting highlight of this work is an optimal strategy
for h-refinement based on log2() histograms. This strategy
avoids many of the pitfalls of the mean and standard devia-
tion based approaches found in the literature. For hierarchal
meshes, the approach is optimal in that it maximally equidis-
tributes the refinement parameter for a given number of adap-
tation cycles. We believe it to be more reliable and robust
than mean and standard deviation based approaches.

Our initial investigation of multilevel local truncation esti-
mates was disappointing due to the irregularities in the mesh
at the embedded boundaries and interfaces. While these com-

plications can be overcome, they affect more of the mesh
than was initially expected. More investigation of this prob-
lem is needed. When applied to a model problem with a
known analytic solution, these truncation error estimates re-

confirmed the accuracy advantages in both LTE and global
error offered by Cartesian meshes.

Future work will focus on several outstanding topics. The
behavior of the refinement strategy needs to be validated over
a wider range of input conditions. While this strategy has
been performed extremely well in initial investigations of
flows with free stream Mach numbers from 0.8-1.6, it has not

been exhaustively tested for broader conditions. The strategy
assumes that the histogram of refinement parameters is
monotonically decreasing to the right of the median bin, and
the validity of this assumption should be investigated under
more extreme conditions. A second topic for further investi-
gation is selection of an initial threshold to control the overall
error level in the simulation. Currently this is done by inspec-
tion of the coarse mesh histogram, but a more automated pro-
cess would be desirable. We have also not implemented a
mesh coarsening algorithm, and while this is not a major con-
tern for steady flows, one will be needed for unsteady appli-
cation in the future. Finally, adaptation is currently "focused"
through the use of pre-specified adaptation regions. Such
regions could be automatically generated using characteristic
information from the flow to appropriately weight or
unweight refinement parameters depending upon the cell's

location in the domain and the input Mach number.
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8 Appendix

The supersonic-vortex model problem discussed in §2.1 and
figures 2 and 3 was performed to measure the local truncation
error of the embedded-boundary Cartesian solver. In this
appendix, we present details of this investigation and com-
pare the Cartesian results with 3 other meshing systems. In
addition to the nested Cartesian grids, this experiment was
performed using three popular body-fitted meshing schemes,

and the same underlying solver (upwind, with linear-recon-

struction). Regular (structured) quad, right triangular, and
"quality' triangular [28] body-fit meshes were used. Figure

A.1 shows the second-coarsest mesh of each of these types of
grid. Four meshes of each type were used in the investigation
and the meshes contained from 128 to 7809 control volumes.

Special care was taken to match the numbers of control vol-
umes for each mesh type as closely as possible.

The example was computed with an inner Mach number,

Min = 3.0, and taking Pin = 1/¥, Pin = 1, r i = 1 and ro = 1.9.
Each case was initialized with the exact solution and the LTE

(of density) within each cell was computed using eq.(4) by
applying the residual operator without using flux limiters.

Table A. 1 contains the L 1 norm of the LTE for each of the 16
simulations. The simulations for each of the mesh types cor-
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Figure A.1: Representative "Quality" Triangular, Right Tri-
angular, and Regular Quad body-fit meshes used in LTE
investigation. These meshes are the second coarsest
used and have 505,525 and 525 control volumes
(respectively).

related closely to a straight line, and the asymptotic slopes of
each are given in the table.

Some aspects of these data merit discussion. As noted in
§2.2, the rate of convergence of the LTE for all mesh types
are similar except for that of the "quality" triangular mesh.
While all the other mesh types demonstrated second-order
accuracy, results for this grid system were only slightly better

than first-order. Since this mesh is not quite uniform, the

stencils used for the gradient estimation and reconstruction
on all of the "quality" meshes are all slightly irregular. Since
every stencil is irregular, each is polluted to some degree by
stretching, cancellation of errors cannot occur, and the result
is a marked degradation in accuracy.

These results contrast with earlier results for a similar prob-
lem using nearly-equilateral triangles [181. That investigation

showed that regular equilateral triangles performed as well
(or better) than regular quads or right triangles. In this case,
however, the "quality" mesh is not equilateral, although all
the triangles are well formed as guaranteed by the Ruppert's
2-D delaunay technique in ref.[28]. Quality 2-D meshes were
chosen for this investigation since it is not possible to gener-
ate uniform meshes of equilateral tetrahedra in 3-D. As a
result, tetrahedral mesh generators typically resort to produc-
ing "quality" meshes that guarantee some angle criterion is
everywhere met, just as Ruppert's Delaunay algorithm does
in 2-D.

The structured quad and right-triangular meshes are substan-
tially smoother than the quality triangular meshes. Neverthe-
less the LTE measurements indicate that even the mild

irregularity in their stencil degrades their performance. While
both provide second-order accuracy, the absolute error level
is from 6 to 10 times worse than the Cartesian grid's perfor-
mance where irregularity is confined to the boundary. In fig-
ure 3 the structured quads require nearly 10 times more cells
to match the absolute level of LTE in the Cartesian scheme,

and while the right triangular mesh performs slightly better, it
does so at the cost of 50% more flux evaluations due to the

higher edge count on these meshes.

Cartesian Mesh with Embedded Boundary Body-Fit Right Triangular Mesh
# of Control volumes Measured L1 (density) Error # of Control volumes Measured L1 (densi_) Error

138 0.03065 144 0.37926
507 0,00930 525 0.07571

1928 0.00246 2001 0.01565
7549 0.00059 Asymptotic slope = 2.11 7809 0.00347 Asymptotic slope = 2.28

Body-Fit Structured (Quad) Mesh Body-Fit Quality Triangular Mesh
# of Control volumes MeasuredLl (density) Error # of Control volumes Measured L1 (density) Error

144 0.30998 128 0.52552
525 0.09223 505 0.22529

2001 0.02422 1918 0.11936
7809 0.00629 Asymptotic slope = 1.94 7490 0.05940 Asymptotic slope = 1.02

Table A.I: L1-Norm of LTE in density for each of the 16 meshes used in the supersonic vortex investigation. The
"Quality" triangulation meshes were produced using the quality Delaunay triangulation algorithm of ref.[28] and
had no angle less than 29 °.
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